Sonic hedgehog signaling plays an essential role during embryonic salivary gland epithelial branching morphogenesis.
نویسندگان
چکیده
Gene targeting studies indicate that sonic hedgehog (Shh) signaling plays an essential role during craniofacial development. Because numerous mandibular derivatives (e.g., teeth, tongue, Meckel's cartilage) are absent in Shh null mice and the embryonic submandibular salivary gland (SMG) develops from the mandibular arch, we postulated that Shh signaling is important for embryonic SMG development. To address this question, we first determined the spatiotemporal distribution of Shh; two transmembrane proteins, patched 1 (Ptc) and Smoothened (Smo), which act as a negative or a positive regulator of the Shh signal, respectively; and the Gli 3 transcription factor, which is downstream of the Shh signal. The epithelial localization of Shh, Ptc, Smo, and Gli 3 suggests that Shh signaling may act within the epithelium in a juxtacrine manner. The SMG phenotype in our embryonic day (E) 18.5 Shh null mice can be characterized as "paedomorphic," that is, it fails to progress to ontogenic stages beyond the Early Pseudoglandular ( approximately E14). In a complementary set of experiments, we used organ culture to evaluate the effect of enhanced or abrogated Shh signaling on embryonic SMG development in vitro. Paired E13 (Late Initial Bud stage) or E14 (Pseudoglandular stage) SMGs were cultured in the presence or absence of exogenous Shh peptide supplementation; Shh-supplemented explants exhibit a significant stage-dependent increase in branching morphogenesis compared with control explants. Furthermore, by using cyclopamine, a steroidal alkaloid that specifically disrupts the Shh pathway, to abrogate endogenous Shh signaling in vitro, we found a significant decrease in branching in cyclopamine-treated explants compared with controls, as well as a significant decrease in epithelial cell proliferation. Our results indicate that Shh signaling plays an essential role during embryonic SMG branching morphogenesis. Exogenous FGF8 peptide supplementation in vitro rescues the abnormal SMG phenotype seen in cyclopamine-treated explants, demonstrating that overexpression of a parallel, but related, downstream signaling pathway can compensate for diminished Shh signaling and restore embryonic SMG branching morphogenesis.
منابع مشابه
Molecular Profiling of the Developing Lacrimal Gland Reveals Putative Role of Notch Signaling in Branching Morphogenesis
Purpose Although normal function of the lacrimal gland is essential for vision (and thus for human well-being), the lacrimal gland remains rather poorly understood at a molecular level. The purpose of this study was to identify new genes and signaling cascades involved in lacrimal gland development. Methods To identify these genes, we used microarray analysis to compare the gene expression pr...
متن کاملCanonical Sonic Hedgehog Signaling in Early Lung Development
The canonical hedgehog (HH) signaling pathway is of major importance during embryonic development. HH is a key regulatory morphogen of numerous cellular processes, namely, cell growth and survival, differentiation, migration, and tissue polarity. Overall, it is able to trigger tissue-specific responses that, ultimately, contribute to the formation of a fully functional organism. Of all three HH...
متن کاملPrimary Cilia Regulate Branching Morphogenesis during Mammary Gland Development
During mammary gland development, an epithelial bud undergoes branching morphogenesis to expand into a continuous tree-like network of branched ducts [1]. The process involves multiple cell types that are coordinated by hormones and growth factors coupled with signaling events including Wnt and Hedgehog [2-5]. Primary cilia play key roles in the development of many organs by coordinating extrac...
متن کاملEmbryonic Salivary Gland Branching Morphogenesis
Salivary submandibular gland (SMG) morphogenesis is regulated by the functional integration of stage-specific growth factor, cytokineand transcription factor-mediated signaling which mediates specific patterns of cell proliferation, cell quiescence, apoptosis, and histodifferentiation. We describe the stage-specific distribution of protein components of key signaling pathways during embryonic S...
متن کاملMelatonin Inhibits Embryonic Salivary Gland Branching Morphogenesis by Regulating Both Epithelial Cell Adhesion and Morphology
Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental dynamics : an official publication of the American Association of Anatomists
دوره 229 4 شماره
صفحات -
تاریخ انتشار 2004